The discovery of liposomes with their many interesting properties has attracted much attention. These tiny spheres are suitable for using as delivery vehicles for nutrients and drugs into the human body. Identical to human cell membranes, they easily transfer and deliver active ingredients. Liposome manufacturing involves the same basic steps but the use many different techniques. Research is constantly being done to increase their effectiveness.
Phospholipids like lecithin is used as raw material. The phospholipid molecules have heads that love water. They also have two tails that are essential fatty acid chains repelled by water. When the phospholipids are put in a solution that is water-based, the heads end up side by side with the tails trailing behind. The fact that the tails repel water means that another layer lines up with the tails facing the tails of the first layer. This natural alignment results in two rows of tightly fitting molecules. These layers form membranes around and inside all cells.
It is possible to customize liposomes for different applications. These applications include delivering drugs to kill cancer cells, transferring DNA to make genetic modifications to cells or delivering cosmetic nutrients to the skin. Preparation method is affected by the application. For example, the concentration and toxicity of drugs used for treating cancer requires a particular preparation method.
All liposomes consist of a lipid bilayer encapsulating a payload of therapeutic molecules. They bypass the digestive tract, so the payload remains biologically inert until such stage as the cell membrane ruptures. The difference between liposomes comes in the way, how, when and where that occurs.
Liposomes are usually synthesized by mixing and dissolving phospholipids in organic solvent. A clear lipid film is formed by removing the solvent. Hydration of this film eventually leads to formation of large vesicles which have several layers, much like the structure of an onion. Each bilayer is separated from the other by water. A form of energy is required to reduce their size. Sonication, agitation by sound waves, is one method used and extrusion is another.
Liposomes are actually fairly simple to make, not requiring complex materials, equipment or methods. Each method and technique offers certain benefits and has some failings. Sonication can cause structural changes to what is entrapped. Liquid hydration methods do not produce a high payload.
Some of the problems that have to be faced are structural instability, inconsistency in size and expensive production costs. Liposomal delivery systems are still in the experimental stage. The precise ways in which they act within the body are being carefully studied as well as ways in which they can be made to target diseased tissue or a specific organ.
One of the greatest benefits of liposomes is there flexibility. They can be adapted in many different ways to suit different applications. Size, surface charge and lipid content can all be varied according to the techniques used. Conventional methods are effective but much experimentation is still being done. The future holds many new possibilities with the exciting developments taking place in this field.
Phospholipids like lecithin is used as raw material. The phospholipid molecules have heads that love water. They also have two tails that are essential fatty acid chains repelled by water. When the phospholipids are put in a solution that is water-based, the heads end up side by side with the tails trailing behind. The fact that the tails repel water means that another layer lines up with the tails facing the tails of the first layer. This natural alignment results in two rows of tightly fitting molecules. These layers form membranes around and inside all cells.
It is possible to customize liposomes for different applications. These applications include delivering drugs to kill cancer cells, transferring DNA to make genetic modifications to cells or delivering cosmetic nutrients to the skin. Preparation method is affected by the application. For example, the concentration and toxicity of drugs used for treating cancer requires a particular preparation method.
All liposomes consist of a lipid bilayer encapsulating a payload of therapeutic molecules. They bypass the digestive tract, so the payload remains biologically inert until such stage as the cell membrane ruptures. The difference between liposomes comes in the way, how, when and where that occurs.
Liposomes are usually synthesized by mixing and dissolving phospholipids in organic solvent. A clear lipid film is formed by removing the solvent. Hydration of this film eventually leads to formation of large vesicles which have several layers, much like the structure of an onion. Each bilayer is separated from the other by water. A form of energy is required to reduce their size. Sonication, agitation by sound waves, is one method used and extrusion is another.
Liposomes are actually fairly simple to make, not requiring complex materials, equipment or methods. Each method and technique offers certain benefits and has some failings. Sonication can cause structural changes to what is entrapped. Liquid hydration methods do not produce a high payload.
Some of the problems that have to be faced are structural instability, inconsistency in size and expensive production costs. Liposomal delivery systems are still in the experimental stage. The precise ways in which they act within the body are being carefully studied as well as ways in which they can be made to target diseased tissue or a specific organ.
One of the greatest benefits of liposomes is there flexibility. They can be adapted in many different ways to suit different applications. Size, surface charge and lipid content can all be varied according to the techniques used. Conventional methods are effective but much experimentation is still being done. The future holds many new possibilities with the exciting developments taking place in this field.
About the Author:
You can visit purensm.com for more helpful information about Methods And Techniques For Liposome Manufacturing.
Aucun commentaire:
Enregistrer un commentaire