samedi 27 septembre 2014

Understanding The Benefits Of Liposomal Encapsulation

By Jody Leach


Drugs used to fight disease typically target specific physical systems or organs. Intravenous drips and injections are the most directly effective delivery method, transferring those medications directly to the blood. Orally administered drugs face degradation from the substances that accompany normal digestion. Liposomal encapsulation creates a protective bubble that wards off acids, while encouraging absorption.

Scientists first became aware of the process during the 1960s, and their discovery ultimately led to new and more effective means of administering drugs internally. Today, it is widely used in the treatment of age-related degenerative conditions affecting vision, stubborn fungal infections, and even some kinds of cancer. Although standard methods of delivery still predominate medically, encapsulation has proven to be a viable alternative.

In order to allow drugs to pass through the digestive tract without being broken down, they must be safely encased within a non-toxic protective barrier. Effectively shielding these individual microscopic capsules is possible when using an organic agent that mimics normal cellular walls. When that substance is activated using a variety of current methods, small individual bubbles made of liposomes are formed.

They are microscopic, and can easily pass through the stomach into the small intestine where the coating slowly dissolves, allowing the medication to be absorbed. In many cases, this process actually improves the therapeutic impact, and has the additional benefit of producing fewer side effects. Not all types of medicine are adaptable to this delivery system, which is primarily associated with water-soluble substances.

Because the process is not invasive and generates fewer negative reactions, there are immediately and obvious advantages. Liposomes are completely biodegradable, and contain no petroleum-derived compounds or other unwanted toxic substances. They easily survive an onslaught of powerful acid, and later function as mini time-release stations within the small intestine. Powerful cancer drugs administered in this way create less collateral damage to surrounding tissues.

While being used successfully today in many hospitals, there are some drawbacks. Production costs are comparatively high, but are subject to a natural decrease as product use expands. Seal leakage has been an issue in some cases, and simple oxidation processes can diminish effectiveness. Certain drugs may experience a diminished half-life, and their long-term viability may be reduced. Even with these known issues, positive benefits exceed negative reports.

The past decade has seen a transition from strictly medical venue to include delivery of nutritional supplements and cosmetic materials. Anecdotal evidence of an increase in physical well-being associated with administering vitamins and minerals in this way are common. Vitamin C has long been touted as a natural way to combat the effects of upper respiratory infections, and this method is said to provide noticeably better results than pills alone.

Although there is currently widespread information available outlining personal production of encapsulated herbs, vitamins and minerals, making medical-quality products is costly and complicated, and is not a panacea for the problems associated with aging. As uses for this drug delivery process continue to grow, consumers will benefit most from its incorporation into health regimens that are already known to be beneficial.




About the Author:



Aucun commentaire:

Enregistrer un commentaire